2020/9/24-25 水沢UM2020 (9/25)

次世代干渉計による 高分解能大質量原始星観測

山口大学 元木業人

+ 田中圭(NAOJ) and 共同研究者の皆様

もくじ

・ALMAによる大質量原始星観測の近況

今後観測したいものは何か?

一円盤から原始星表面へ

大質量星の着火はいつか?

ngVLA/SKAで手が届くか?

大質量星形成

研究意義

- ・星形成とはほぼ星団形成 (含む低質量星/惑星)
- •元素合成(核燃焼、SN、NS-NS merger)
- Energy Feedback

高分解能観測の役割

降着の質がIMF決定のラストピース
 円盤分裂と連星形成...IMFトップ側を直接支配
 アウトフロー...コア以下の星形成効率決定
 降着依存の原始星進化...フィードバックの進化

ALMAによる大質量原始星観測の近況

ALMA長基線による円盤観測例

・高分解能観測はまだ数える程度 →構造に対する解像度は日本人PIデータが高い

Name	Distance	Beam (mas)	Beam (au)	Radius (au)	Radius /Beam	ref	
Source I	0.44	100	50	80	1.6	Hirota et al. 2017	
G351.77-0.54	1.0/2.2	20	20/44	-	-	Beuther et al.2018	
G353.273+0.641	1.7	50/23	85/40	250	6.3	Motogi et al. 2019	
IRAS07299-1651	1.7	30	51	12	0.2	Zhang et al. 2019	
HH80-81	1.7	40	68	300	4.4	Girart et al. 2018	
G17.64+0.16	2.2	25	55	120	2.2	Maud et al. 2019	
IRAS16547-4247	2.9	50	150	870	5.8	Zapata et al. 2019 Tanaka et al. 2020	
AFGL4176 mm1	4.2	30	130	1000	7.7	Johnston et al. 2019 (Submitted to A&A)	
G23.01-0.41	4.6	200	920	2500	2.7	Sanna et al. 2019	

First unstable disk: G353.273+0.641

どこまで見えているか?

- 10 30 Msun星で降着円盤を撮像:~10天体
 降着円盤(半径50 300 au)の空間分解
 substructure(渦状腕、分裂、連星)の検出:数天体
 →日本のグループが割とリードできている
- 今後は長基線でのイメージングサーベイが必要
 →個性/環境と進化の切り分け

今後観測したいものは何か?

1. 円盤から原始星表面へ

円盤/原始連星

- ・
 円盤内縁の空間分解
- cm波ならほどほどの τ で観測可能 (ダストの光学的厚み低下)
 →円盤自体が遮蔽体にならずに奥まで見える
- 現ALMA LBの分解能で十分な天体数をカバーしたい(up to 5 kpc)
 →円盤/原始連星の統計データベース
 →空間分解撮像 + 連続波スペクトル(ALMA + ngVLA/SKA2)
- 原始連星の軌道運動

$$T_{\text{orbit}} \simeq 7 \left(\frac{m}{20M_{\odot}}\right)^{1/2} \left(\frac{a}{10\text{au}}\right)^{3/2} \text{ yr}$$

- -1周回らなくても固有運動検出自体は可能
- 軌道のムービーが撮れるはず

円盤内縁~原始星の直接撮像?

- 表面への3D降着
- ・回転による変形
- 超巨星に類似の 膨張大気?

原始星大気の直接撮像

高い降着率で膨張した原始星大気
 ~ 100 - 1000 Rsun

(Hosokawa & Omukai 09, Haemmerlé + 16)

- → 最大視直径で2 10 mas @ 1 5 kpc
- → サイズと距離によっては解像に手が届く
- 10 40 GHzで数千Kを検出できればよろしい
 - 原始星の電波光球の直接撮像
 - 円盤内縁から表面への物理的接続
 - 進化経路に多様性があるか?
- 周波数的には1 cm前後が良さそう(10 30 GHz)
 - ダストも近傍/前景のHII領域も邪魔にならない?

2. 大質量星の着火はいつか?

理論的に予想される星進化経路

高降着率では
 膨張 (Hosokawa+ 2009; 2010, Haemmerlé + 2016)
 中心温度が上がらないため核燃焼開始時の質量が大きくなる

 $\dot{M} = 10^{-3} M_{\odot} / vr$

sph. acc.

100

: rad.

: conv.

(IV)

(II)

 $\log M_*(M_{\odot})$

10

(III)

・進化パスは加熱と冷却の仕方に依存
 →円盤内縁からの降着の質と量
 →着火質量は自明とは言えない

ngVLA/SKAで進化経路に観測的制限を…

- 現状はモデルによって星の外半径がかなり可変
 - 降着による星の加熱と冷却のバランス
 - 降着率は手で与えている状況
 - 星の回転やwindは考慮したモデルまだ少ない
- ・ 観測的制限が必要
 - 極小サイズのHII領域の付随と星質量の関係 を調べれば着火質量から進化経路を制限可能
- ・分解能次第では活動性/固有運動もみえる?
 - 3次元膨張/電離降着流
 - 紫外線量の変化による正味のサイズ変動
 - 固有運動がとれれば電波ジェットとの切り分けも容易

ngVLA/SKAで手が届くか?

予想される輝度温度感度(ngVLA)

• ALMAと同程度~VLBI分解能で熱放射が見える

	連続波輝度温	度感度 1hr (70	(כ			連続波は
分解能 (")	8 GHz	16 GHz	27 GHz	41 GHz	93 GHz	1 - 10 mas間に谷
1	4.5E-02	1.2E-02	4.9E-03	2.8E-03	2.1E-03	
0.1	3.9E+00	9.1E-01	3.5E-01	2.1E-01	1.4E-01	ダフト可
0.01	3.5E+02	8.7E+01	3.2E+01	1.9E+01	9.5E+00	
0.001	2.8E+06	1.0E+04	2.5E+03	1.4E+03	8.8E+02	←HII領域(+星大気?)は可
0.0001					2.1E+06	

mas分解能を想定すると…

- •<u>ngVLAの場合</u>:
- 星大気は > 27 GHzなら観測可
- HII領域は > 16 GHzでOK
- <u>SKA2の場合:</u>1−5 mas/500 K(7σ): SKA1の10倍想定
- 感度的にはngVLAより有望?、分解能は>15 GHzでギリ?

連続波は非常に有望

• 円盤/原始連星/星表面

- 円盤/原始連星の解像が十分可能
- 星表面についてもギリギリ感度は足りそう
- ~あとは1mas分解能さえ達成すれば星大気に手が届く
- 極小HII region

- 1 mas、> 10 GHz (Tb < 10⁴ K, 7 σ) でHII領域の有無を制限 →10 - 100 au で光学的に厚いHII領域なら

1-10 mas 分解能で銀河系外縁までカバー可能

- 降着量/紫外線量の変化によるサイズ変動などもみえる?

2つ合わせて高降着率下での原始星構造 と進化の多様性を明らかにできる可能性大

より直近SKA1の場合

SKA1				7σ Sens	itivity/hr				
Freq	Beam		Cont		Line (30 km/s)		FoV		
GHz	mas	AU @ 5kpc	µ Jy∕b	Tb (K)	µ Jy∕b	Tb (K)	arcmin	pc @ 1kpc	pc @ 5 kpc
8.5	50	250	9.1	60	630	4154	12.5	3.8	18.8
15.3	30	150	8.4	50	595	3542	6.7	2.0	10.1
25 (仮定)	16	80	8.4	65	595	4604	4	1.2	6.0

- 円盤を見るには感度不足
- ・円盤中心~星の解像には分解能不足
 →SKA2なら感度、分解能10倍でOK (LineはNG?)
- 極小HII領域に対する感度と分解能がちょうど良い (JVN: 100 masで探査、感度ギリギリ)
- ・星形成領域1つを1回の観測でカバー可能
- ・5 kpc程度まで大質量星形成領域を根こそぎ探査可能

まとめ

- ALMA LBで大質量星形成におけるPrototypicalな円盤の空間分解 撮像が進む。今後は数を揃えて多様性を調べる必要あり
- ngVLA/SKA2の感度ではVLBIの分解能(1-10 mas)で熱放射に手が届く予定
- 円盤の観測では、光学的に厚くなるのを避けて円盤内を観測可能
- 原始連星の軌道を直接測定できる可能性が高い
- ・膨らんだ大質量原始星のサイズ次第では直接分解撮像が可能に なると期待(ngVLA > 27 GHz, SKA2 > 15 GHz)
- 1-100 masの分解能で極小HII領域の付随をしらべることで、原始星の核燃焼開始質量に制限(探査はSKA1でかなりいけそう)
- これらのデータから原始星進化に観測的な制限を期待