電波天文周波数小委員会の活動

立澤加一、亀谷收、川口則幸 (国立天文台)

Abstract

電波天文学観測に影響を与える各種の外来混信から電波天 文観測施設を守り、かつ、電波天文観測の重要性を知らせる ために、電波天文周波数小委員会は各種の活動を活発に行っ ています。ここでは、その活動内容を懸念事項を含めて紹介し ます。

電波天文周波数小委員会構成

(親委員会:電波専門委員会)

委員長: 川口則幸(国立天文台水沢VLBI観測所) 副委員長: 亀谷 收(国立天文台水沢VLBI観測所)

委員 (50音順)

今井 裕 (庭児島大学大学院理工学研究科) 梅本智文 (国立天文台水沢VLB)観測所) 岡 朋治 (慶応義塾大学理工学部物理学科) 川邊良平 (国立天文台野辺山宇宙電波観測所) 河野孝太郎 (東京大学大学院理学系研究科) 小門研売 (国土地理院宇宙測地課) 化物元 (国土地理院宇宙測地課) 相称和夫 (北海道大学理学研究院) 高羽 浩 (岐阜大学工学部) 大師堂経明 (早稲田大学教育学部) 土屋史紀 (東北大学大学院理学研究科) 藤澤健太 (山口大学理学部) 藤下光身(東海大学産業工学部) 前澤裕之(名古屋大学太陽地球環境研究所) 村田泰宏(JAXA 宇宙科学研究本部) 森田輔一郎(国立天文台ALMA推進室)

事務局&委員

立澤加一 (電波研究部 小委員会事務局長) 斎藤泰文(野辺山宇宙電波観測所) 岡保利佳子(電波研究部)

電波天文周波数小委員会(現活動を概観)

新電波応用の出現とその影響

* 車載レーダ (UWBレーダ: 22-29GHz → 79GHzレーダ: 77-81GHz) 平成22年8月 一部答申を予定

電波天文施設近傍で

自動停止(IMBレーダ) **停止なし**(79GHzレーダ)

星間分子雲(暗黒星雲)の様々な分子スペクトル線の観測に支障

*無許可・小出力電波応用/デバイス
· Short Range Davices, - Ultra Wide Band 応用

⇒ 電波天文観測に支障?

ITU-R国際勧告化動向とその影響

- * ITU-R WRC-12議題 1.8/1.6 (無線通信規則RRの改定に係る) 電波天文観測パンド (71-238GHz, 275GHz-3THz帯)
 - 1-3THz周波数帯域の利用レビュー
 - ・他無線業務との周波数共用研究がスタート

電波天文周波数小委員会 国内活動

* 総務省ITU-R (国際電気通信連合) 部会

科学業務委員会: WP7D (電波天文) 対応国内会議

- 電波天文の日本対処方針を決定する
- 国立天文台は国内の電波天文を代表する

スペクトラム管理委員会: WPIA (スペクトラム管理) 対応国内会議

- 多様な国内無線業務の周波数関連事項の日本対処方針を決定する
- 国内で電波天文の周波数保護を代弁
- * 総務省WRC対策部会(APT会合対応国内会議)
 - · APT会合における日本の対処方針を決定する

(IRC: ITU-Rの国際無線通信規則 通等RRの改定を所掌

ITU-Rの上位機関であり、周波数に係る活動目標(機関)を設定)

(APT:アジア太平洋地域)

- * 総務省ITS無線システム委員会一高度道路交通システム
 - 79GHz帯高分解能車載レーダシステム
 - 車蔵レーダシステムから電波天文を保護する

電波天文周波数小委員会 海外活動

* ITU-R (国際電気通信連合)

国連ITU本部(スイス国(ジュネーブ))で定期開催(勧告を作成) 国際関停の場、日本代表団(総務省参与)として参加、

WP7D (電波天文): (国立天文台が日本の電波天文を代表)

- ・世界に対し、日本の電波天文を代表
- 2010年は6月、10月 約年2回 各1週間開催

WP1A (スペクトラム管理): (日本の周波数保護活動の場)

- 多様な能動無線業務に対し日本の周波数保護を主張
- ・日本代表団でなく、IUCAFから参加の可能性もある

* APT会合(WRC会合に対するアジア太平洋地域会議)

- WRC会合は国際的な間波数利用が決定される場 (駅C会合(4年ごとに開催)では、ITU-R地域 (R1~R3)の意見が重視される、 日本は第3地域 (APT:アジア太平洋地域))

ITU-R動向と総務省戦略

ITU-R動向:「THz帯への帯域拡張」

- 1)1-3THz帯観測の ITU-R RA.1860勧告
- 2)WRC-12議題1.6でRR脚注5.565の特定周波数帯域の上限引き上げ 1THzから3THzに拡大する
- 3)THz帯の他業務との共用に関する 新ITU-R Report RA.[THZ-SHARE]

(従来から、1THz以下観測に対応する勧告はITU-R RA.314があり、10-1000THz帯の 勧告としてはITU-R RA.1630がある。) (RR周波数分配は現状で275GHzまで)

総務省戦略:「電波資源拡大のための研究開発」

- 1) 周波数を効率的に利用する技術
- 2) 層波数の共同利用を促進する技術
- 3)高い周波数への移行を促進する技術

総務省-5つの電波新産業創出プロジェクト

務省総資料から引用

電波天文周波数小委員会

電波干渉妨害要因とその対策:

79GHz帯車載レーダ

77-81GHz 2010年2月に作業班客議開始

天文台側と推進側でAd-hocレベルでつめ

離隔距離の設定と自動停止 "なし"の前提

21GHz次期放送衛星システム (21.4-22GHz)

スーパハイピジョン放送 (地デジTVの16倍解像度) 2015年に実験放送スタート? 22GHz水メーザ観測(22.21-22.5GHz)に支障?

州氷技研と協議が必要

BS放送19chBS-IF周波數(1.39472GHz)

1. 4GHz観測への妨害 (総務省21chBS-IFの携帯電話への干渉で対策を決定)

(19chの同時救済に追加申請が必要?)

现行総務省言波天文保護審査基準

国際基準ITU-R RA. 769に準拠 OR 暫定総務省提案の受け入れ?

総務省と協議再開

電波天文周波数小委員会

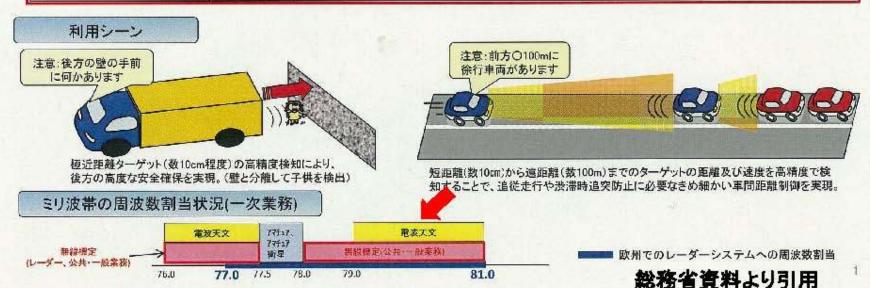
ITU-R研究動向

- * WRC-12議題 (無線通信規則RRの改定に係る)
 - 電波天文バンド(71-238 GHz帯)の他業務との共用研究スタート
 - 電波天文パンド (275 GHz-3 THz帯) のレビュー開始
 - → 将来 ALMA帯域への他業務干渉の可能性?
 - * 許認可不要の広帯域微小電力無線応用
 SRD (Short Range Devices)応用: UWB (Ultra Wide Band) / RFID
 (小電力、広帯域、許認可不要) 電波新時代への備え
- * 準天頂衛星システム/ 宇宙太陽光発電計画
 - 高仰角な天頂衛星即位システム
 - JAXA Model: 1 GW, 5.8 GHz
 - ➡ 新しい衛星出現の脅威

79GHz帯高分解能レーダの特徴

別紙

特徵

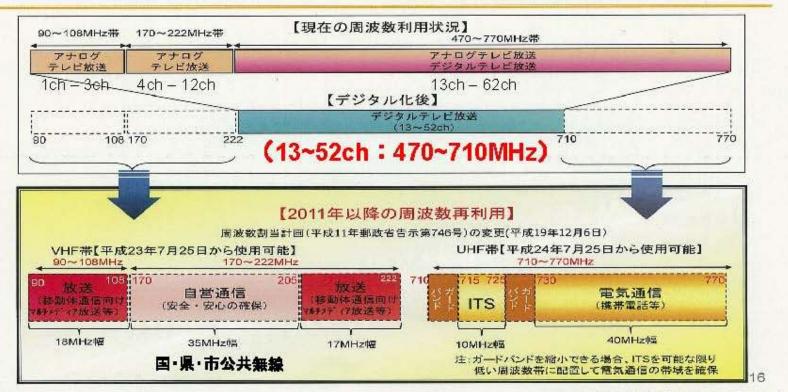

● 短距離から長距離までの幅広い範囲で検知・分離が可能

数10cmから数100mの距離離れた状態でも物体を高精度に検知・分離することが可能なため、マルチレンジに対応した レーダシステムとしても活用可能。

海外

欧州では2004年に制度化 周波数帯:77GHz~81GHz 出力:-9dBm/MHz(125 μW/MHz)
 (今後、米国、アジア諸国等でも導入に向けた検討が開始されることが想定)

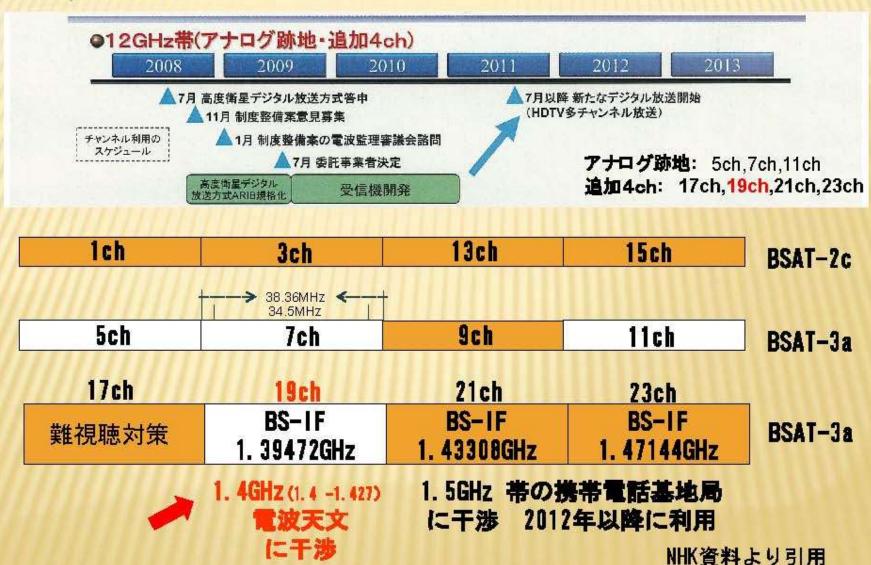
79GHz帯レーダ(短距離モード) (長距離モード)	77~81GHz を候構に検討	今後具体的に検討			数cm程度 数10cm程度	最大数10m程度 最大数100m程度
76GHz帯レーダ	75~77GHz	500MHz以下	10mW	40dBi以下	30cm程度	最大 200m 程度
60GHz帯レーダ	60∼61GHz	500MHz以下	10mW	40dBi以下	30cm程度	最大 200m 程度
UWBレーダ	22~29GHz	4750MHz以下	-41.3dBm/MHz	<u> </u>	3cm程度	最大 30m 程度
既存レーダとの比較	周波数	占有周波数帯域幅	電力	空中線利得	最大分解能	測距可能な距離


TVデジタル化と空き周波数帯域

2003年 周波数の再編方針

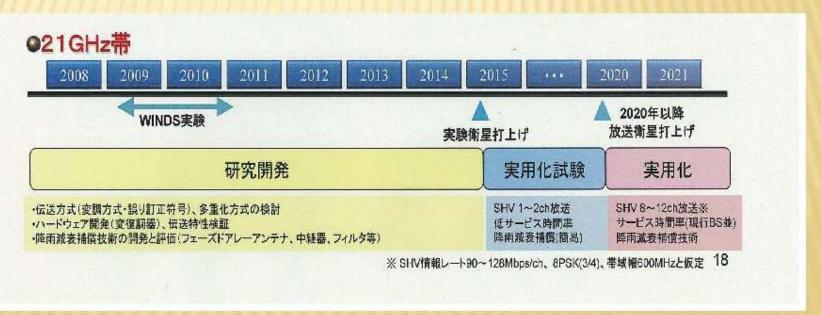
2006年 地上デジタルTV帯域決定 (13~52ch: 470~710MHz)

2011年 7月デジタルTVへ移行完了予定


地上テレビ放送デジタル化後の空き周波数の有効利用

総務省資料から引用

BS-19ch 中間周波数 (1.4GHz) と電波天文


(BS放送:11.7-12.2GHz)

21GHz高度放送衛星システム

21.4~22.0GHz 600MHz帯域、衛星の最大送信電力約1.4kw 降雨対応可変ビームパターン衛星、サービスエリア内全域で40dBI以上の利得 スーパーハイビジョン(3300万国素 超高精細度放送)、立体TV放送など、高度化、 高機能化する衛星放送ニーズに対応

- *2015年 スーパーハイビジョン実験放送
- *2020年 スーパーハイビジョン多チャンネル本放送予定

許認可不要の広帯域微小電力無線応用

(従来、無線局は総務省の認可が必要とされた)

SRD (Short Range Devices)

ITU-R SM. 1538 'Technical and operating parameters and spectrum requirements for short-range radiocommunication devices' 各種の国際標準が規定されているが、

「基本は各国の法的規制に準じる、特別な場合を除き、他に干渉を与えないこと、また他からの干渉に対する保護はない」

SRD利用帯域

「電波天文業務、航空移動業務、生命安全」に係わる帯域は禁止」 「RRのISM (Industrial, Scientific & Medical)帯域とオーバラップ するが、保護はない」

SRD放射出力

日本の認可不要局の放射出力は、

「322MHzまで、150GHz以上は 500uV/m , 322MHzから10GHzまで35uV/m 10GHzから150GHzまでは線形補間(両対数)」

UWB

10G

100M

周波数幅(Hz)

図1-1 UWB無線システムの周波数利用の概念

10k 100k 1M 10M

許認可不要の広帯域微小電力無線応用

UWB (Ultra Wide Band)

定義(FCC):帯域が最低500MHzまたは 中心周波数の20%以上 放射出力が-41.3dBm/MHz

UWB応用(車載UWBレーダ/UWB通信など) 車載UWBレーダ(22-26GHz, 24-29GHz, 77-81GHz)

UWB通信 (3.1-10.6GHz MB-OFDM 推進 WiMedia ALLIANCE)

102

(W/MHz) (10°2 (10°3 (10°3 (10°3

10 10-

- 1) ITU-R SML 1757 'Impact of devices using ultra-wideband technology on systems operating within radio communication services
- 2) ITU-R SML 1756 'Framework for the introduction of devices using ultra-wideband technology
- 3) ITU-R SML 1755 'Characteristics of ultra-wideband technology'
- 4) ITU-R SML 1754 Measurement technologies of ultra-wideband transmission"

SRD(Short Range Devices)

750MHz RFID

(1)運輸(積込み)の作業効率向上

資源環境システムにお

(3)集配・回収業務の作業効率向上

コンピニ、宅配、スーパー等の商品等 の集配・回収業務において、移動可 能なリーダノライタで、商品や回収容 器に装着された電子タグを読み書き

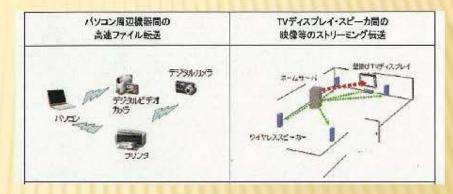
(5) 設備・機器等の保守点検の作業効率向上

の保守点検業務にて、機器に装着し た電子タグ内の情報を読み書きし、作 業履歴等を管理する。

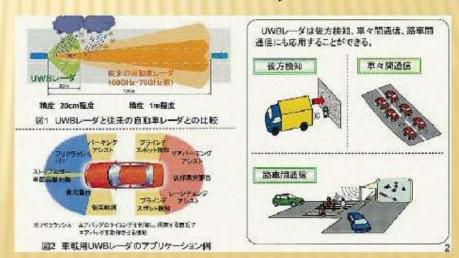
(2)アバレル店舗、書店等の入庫管理の作業効率向上

ハンガー形状で積載された商品や

(4) 搬送物等置き場の作業効率向上

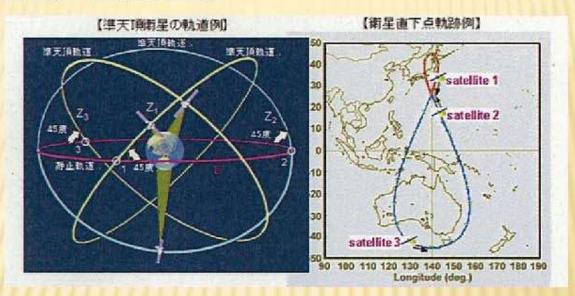

置めの積み上げた搬送物や、大型 の粉送物等に電子タグを装着し、 所在の確認作業や入出荷作業の 効率を上げる。

(6)老人・身体障がい者等の生活の質向上



用の電子タグを識別することで、 スムーズに横断できるよう信号を 制御する。

UWB通信


UWBレーダ

新しい衛星の脅威

新衛星応用 1/2

準天頂衛星システム

高仰角な衛星測位システムの実現

静止軌道を約45度傾けた軌道に少なくとも軌道面を120度ずつずらし3機の衛星を お互いに同期して配置する

高度は約36000km 地表面軌跡が8の字を描く

常に1つの衛星が日本の天頂付近に滞留する衛星測位システム

衛星通信・放送システム応用は実用化見送り

宇宙太陽光発電

JAXA-Model: 1GW 5.8GHz

JAXAホームページより引用