

	黒体輻射関連の式	E,	
	黒体輻射の輝度		
\square	$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$	(1)	
	単位面積あたりの放射強度(シュテファン・ボルツマン則)		
	$l = \iint B_{\nu} \cos \theta \ d\nu d\Omega = \pi \int B_{\nu} d\nu = \sigma T^4$	(2)	
_/	単位周波数あたりのエネルギー密度		
\square	$\varepsilon_{\nu} = \frac{4\pi}{c} B_{\nu},$	(3)	
	エネルギー密度		
	$\varepsilon = \int \varepsilon_{\nu} d\nu = \frac{4\pi}{c} \int B_{\nu} d\nu = \frac{4\sigma}{c} T^4$	(4)	
	輻射の圧力 (参考:光子の運動量 p = E/c)		
	$P = \frac{2}{c} \iint B_{\nu} \cos^2 \theta \ d\nu d\Omega = \frac{4\pi}{3c} \int B_{\nu} d\nu = \frac{\varepsilon}{3}$	(5)	
すべて温度で決まる			

ビッグバン宇宙 まとめ

 理論的に予想され、3大証拠を含む多数の科学的 証拠により実証された現代宇宙観の根幹である
(常識的には信じられないかもしれないが...)

アインシュタイン自身も最初は 信じなかった... (宇宙項の導入とその後の 撤回。しかし、宇宙項は現在 その存在が確実)

まとめ:星形成と電波天文

- 星形成領域での冷たい分子ガスは、電波天文学の 重要な観測対象
- 詳しい観測から宇宙において 太陽のような星がどのように誕生するか 惑星系がどのように誕生するか 生命(の源)がどのように誕生するか

等を明らかにすべく研究が続けられている。