

| 前回の復習              |
|--------------------|
| ■電波の性質             |
| ■ 望遠鏡の分解能 θ ~ λ/D  |
| ■ 電波の観測量:フラックスと輝度  |
| ■ 輻射輸送の式           |
| ■ 黒体輻射             |
| ■ 輝度温度、VLBIの感度     |
| ■ 高輝度放射1:メーザー放射    |
| ■ 高輝度放射2:シンクロトロン放射 |
| ■ 干渉計の原理           |



### 干渉計の生みの親: Martin Ryle

### 1974年ノーベル賞

Marin Ryle (1918-84)
英国ケンブリッジ大学で
電波干渉計を開発

同時受賞はA. Hewish (パル サーの発見)



### The Nobel Prize in Physics 1974

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"



Sir Martin Ryle

1/2 of the prize

University of Cambridge Cambridge, United Kingdom

United Kingdom

b. 1918 d. 1984



Antony Hewish ① 1/2 of the prize United Kingdom

> University of Cambridge Cambridge, United Kingdom b. 1924





# センチ波の干渉計

■ 系外銀河のHI観測などで活躍





























































































































## Calabash Nebula OH231.8+4.2 Bipolar Nebular + AGB Star QX Pub



















# <text><list-item><list-item><list-item>



































|                           | Apparen                              | tly-large                           | e BHs              |   |
|---------------------------|--------------------------------------|-------------------------------------|--------------------|---|
| source                    | M <sub>BH</sub> /M <sub>sun</sub>    | Distance                            | Angular<br>radius  |   |
| Sgr A*                    | 4 x 10^6                             | 8 kpc                               | 10µas              |   |
| M87                       | 3 ~ 6 x 10^9                         | 15 Mpc                              | 4 ~ 7µas           |   |
| M104                      | 1 x 10^9                             | 10 Mpc                              | 2µas               | - |
| Cen A                     | 5 x 10^7                             | 4 Mpc                               | 0.25µas            | - |
| Shadow dia<br>For imaging | meter : 1~5 time<br>g shadow, ~ 10μa | es Schwartshild<br>as resolution is | radius<br>required |   |







